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Abstract 

We derive the exact equation of motion for a vortex in two- and three- 

dimensional non-relativistic systems governed by the Ginzburg-Landau equa- 

tion with complex coefficients. The velocity is given in terms of local gradients 

of the magnitude and phase of the complex field and is exact also for arbi- 

trarily small inter-vortex distances. The results for vortices in a superfluid or 

a superconductor are recovered. 
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Vortices are found in a variety of physical systems. Accordingly, the study of these 

intriguing collective excitations attracts widespread attention among the physics community. 

Examples of vortices often studied are hydrodynamic vortices, vortices in superfluids, in 

superconductors and in nematic crystals, and cosmic strings [1,2]. An important goal is to 

clarify the mechanisms by which vortices are created and the details of their motion subject 

to local interactions, such as crossing, merging and intercommutation, as well as long-range 

forces. These issues have recently been addressed in the context of relativistic scalar field 

theories [3,4]. 

In this Letter we present an analytic derivation of the exact equation of motion for a 

vortex in a non-relativistic dissipative system. The system we study is one modelled by the 

extensively studied [5-91 Ginzburg-Landau equation with complex coefficients (CGL) 

$ -4 = P(A, .4*)A + bV2A (1) 

where -4 = IAl exp(iS) is a complex field, the function P is given by P(A, A*) = ~-cL[A[~, and 

a, b, p E C. By a suitable resealing of time, space, and A, the number of (real) adjustable 

parameters in the coefficients of eq. (1) may be brought down to two, as is often done. 

However, we shall keep eq. (1) unscaled for clarity. 1’e study the equation in two and three 

spatial dimensions. 

The reason for selecting the CGL equation is two-fold. Firstly, it is a relatively simple 

partial differential equation; yet it exhibits the principal features of more complicated os- 

cillatory systems. A prime example of such systems are react,ion-diffusion systems, such as 

the chemical oscillatory Belousov-Zhabotinsky reaction [lO,ll]. 

Secondly, the CGL equation contains a number of interesting special cases. When a, 

b, and ~1 are purely imaginary the CGL equation coincides with the non-linear SchrGdinger 

equation. The latter equation describes the quantum dynamics of superfluid !He and is 

known in that context as the Ginzburg-Pitaevskii-Gross equation (GPG) [12]. Furthermore, 

by employing the Madelung transformation (131 the non-linear SchrGdinger equation also 

transforms into the hydrodynamic equations for an inviscid fluid (the Euler equations). In 
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both cases IAl* corresponds to the (super)fluid mass density and VS is proportional to the 

velocity of the (super)fluid. We stress that the GPG case is special because it describes a 

conservative system and the vortex motion can be derived from a Lagrangian. The CGL 

equation, on the other hand, describes a dissipative system and one is compelled to pursue 

a direct derivation of the vortex equation of motion, as we do here. 

Equation (1) permits solutions in which A has phase singularities (defects). In two space 

dimensions these are isolated points around which the phase S changes by multiples of 27r. 

At the same points the magnitude IAl vanishes, so that the complex field A remains single 

valued, see figure 1. In the vicinity of a defect the phase is of the form S = G(r) + n(p - tit) 

in polar coordinates (r, 93) [14]. F or a constant phase S this is the equation for Inl-armed 

spirals rotating at an angular frequency w. In three dimensions the defects become one- 

dimensional strings, or fibaments, and the spirals generalize to scroll waves [11,15] which 

look like sheets wound around a filament. The filaments may be closed or open (in which 

case they end on the system boundary) and of arbitrary shape. We shall call a solution 

with one defect or filament (in two or three dimensions) a spiral vortex, in analogy with the 

(non-spiral, $‘(r) = 0) vortex solution of the GPG equation, which describes the circulation 

of the superfluid around strings of normal-phase fluid. The integer n is the winding number 

of the vortex and is a topologically conserved quantity in two dimensions but not in three. 

The core of the vortex is the region where the magnitude IAl deviates significantly from its 

asymptotic value, see figure 1. 

The evolution of a system with (spiral) vortices may be described in terms of the motion 

of the defects, or filaments, along with values of the fields I.41 and S at positions away from 

the defects or filaments. Such a separation into collective coordinates and field variables 

is non-trivial, and the present work comprises the first exact treatment of this kind for 

a dissipative system. The motion of a vortex is affected by modifications in the field il 

due to the presence of other vortices or system boundaries. If the vortices are assumed 

to form a dilute system, i.e. one where the defects are well separated, the influence of 

variations in the magnitude IAl of the complex field may be neglected, since IAl will assume 

3 



its asymptotic value at distances much smaller than the inter-defect distance [16]. Under 

this assumption, the interaction between vortices can be described entirely by the phase S. 

In this approximation Rica and Tirapegui [8] ( an d in a slightly different form also Ref. [9]) 

have derived the equation of motion in two space dimensions for the position of the Icth 

defect X,(t) in terms of the portion of the phase S due to other defects, Otk)(s) E S - nkpk, 

where tanyk = (y-Y~)/(z-XI,). Th eir result (for Ink] = 1 and b, = 1, but here generalized 

to any value of nk and bR) is 

dxk kkE-= 
dt 

2b,VBck) - 2b %i x V8’k) 
Rlnkl ’ 

(2) 

where b, = Re b, b, E Im b, and i = ai: x jj is normal to the plane. The first term, 

proportional to the gradient, is that found by Fetter [17] in the GPG limit corresponding 

to b, = 0, b, = h/(2m) and states that the vortex moves with the local superfluid velocity. 

The second term is the perpendicular Peach-Koehler term [18] first found in this context by 

Kawasaki (191. 

When the system of spiral vortices cannot be approximated by a dilute system the 

expression (2) for the defect velocity is no longer valid but will acquire additional terms. 

We shall take a completely general approach in which the amplitude IAl is allowed to vary. 

This will enable us to determine the exact motion of a defect also when another defect is 

located an arbitrarily small distance away, i.e. even when the vortex cores overlap. It will 

also provide the exact motion of a defect which is arbitrarily near a system boundary. For 

filaments in a three-dimensional system our treatment will furthermore correctly incorporate 

interactions with other segments of the same filament. 

The corresponding problem for a relativistic scalar field theory was solved by Ben-Ya’acov 

[4]. His derivation was based strictly on a covariant world-sheet formalism that cannot be 

applied to a non-relativistic theory. For the CGL equation one must therefore resort to other 

methods. 

Let us consider the general motion of vortices in three space dimensions. The motion in 

a two-dimensional system can be found from the three-dimensional problem as the special 
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case of straight, aligned vortices. 

We may generalize eq. (1) by admitting any continuous function P(A, A*). The details of 

P do not enter the derivation. The field A is zero on a collection of one-dimensional strings 

which are the filaments. Let the position of the filament l? of a vortex be given at time t by 

X(s,t), where s is the arclength coordinate along l?. We define a local coordinate system 

along the string as follows [20]. .4t each point along the string the unit tangent vector 

2’ = aX/ds, the unit normal vector N, and the binormal vector B = T x N form an 

orthonormal frame so that any position x in a neighborhood of the string can be expressed 

as x = X(s,t) + dV(s,t) + yB(s,t). Th e coordinate representation (s, Z, y) is unique for 

z < l/rc but becomes singular when z reaches or exceeds the radius of curvature l/~. 

Along the string, the transport of the unit vectors is given by the Frenet-Serret equations 

PO1 

dT C??N 
-=KN, -= 
dS f3S 

-KT+TB E = --TN 
‘ds ’ (3) 

where K is the curvature and r is the torsion of the string. Let us further introduce the local 

polar coordinates T, 9 defined by z = T cos p, y = T sin 9. In terms of these coordinates, the 

gradient and Laplacian take the forms 

V=TH++;+&if 
I+? 

K - 
1 - KTCOS$ZJ ( 

d 13 
cosy- - sinp-- , 

dr ray ) 

where 

H= 
l-Kt.cos&-r&). 

(4 

?Ve now proceed to find the velocity X( s, t) of the filament I. Because this string of zeros 

of the function A has no transverse extension and is a feature of a solution of an underlying 

local field theory, its motion should be determined from the behavior of the fields IAl and 
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S in an infinitesimal neighborhood of the filament. It will be sufficient to study the fields 

within a distance E < min(d, l/~), w ere d is the shortest distance to another string segment h 

[21]. This condition ensures uniqueness of the coordinate representation. 

The phase field S is multi-valued and satisfies S(s, r, 9 + 27r; t) - S(s, T, p; t) = n 27~ 

for 0 < r < E. Let us therefore split S = x + 6’ in such a way that x contains all multi- 

valued contributions to the phase and depends on time only through the position of the 

filament I?. For a straight (or two-dimensional) isolated vortex one may choose x = np. 

A consistent description of the multi-valued phase of an arbitrarily shaped vortex filament 

requires, however, a global realization such as the Biot-Savart integral, 

vx=E J 2 r dX x I~:$ . (7) 

This expression is known to contain logarithmic divergencies as T ---f 0, as well as functions 

of the azimuthal angle y that are multi-valued at T = 0 [2]. We therefore absorb in x any 

part of S that is non-differentiable at r = 0. Similarly, we may write IAl = Rw, where 

In R depends on the filament position and contains all contributions to In IAl that are non- 

differentiable at T = 0. For a straight isolated vortex one may choose R = ~1~1. Thus 0 and 

In w are differentiable and it follows that the time derivatives 4 and ti are finite for T < E. 

We remark that the choice of x and R is not unique, since S and l-41 are invariant under 

two independent local symmetries 

x+x+6, e+e-5 ; R --f Rf, w + wf-’ , (8) 

where 6 and In f are differentiable. 

With these definitions the real and imaginary parts of equation (1) lead to the two 

equations 

-$ (In R + In W) = Re(P) + b,Ql - b,Qp , 

2 (0 + x> = Im(P) + b,Ql + bRQ2 , 

(9) 

(10) 

where 
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Qi = V21nR+V21nw 

+(VlnR+Vlnw)2-(V~+V0)2, 

Q2=V2x+V28+2(VlnR+Vlnw)~(Vx+V~). 

The time derivative d/dt in eqs. (9) and (lo), w ic is to be evaluated in the lab frame, is h h 

related to the time derivative a/dt in the moving reference frame of the local segment of the 

filament by d/dt = -Jk . V + d/at. 

In order to include logarithmic divergencies as well as multi-valuedness as T -+ 0, we 

write Vx = fi+ + (n/r + f2)+ + X1T and V In R = (InI/r + fz)+ + f~+ + X2T, where 

fi(r7 63, S, t> = Si(V, S, t) + h(V7 s,t> In f-v + Q(r) (11) 

and O(r) denotes any terms that vanish as r --t 0. It can be easily confirmed from this 

equation (as well as argued on general grounds) that ax/at, ax/as, d(ln R)/i%, d(ln R)/ds, 

Xi and X2 have well-defined finite limits as r + 0. We require that Vx and Vln R be 

integrable, and that they satisfy the following condition near the filament: 

Vx - f$T x VlnR = C(s,t) +0(r) . (12) 

The arbitrary vector C corresponds to a choice of gauge in eq. (8). In the symmetric gauge 

R = +I, x = np for a straight (or two-dimensional) isolated vortex we have C = 0. 

Since 8 and In w are differentiable, the singularities of Vx and V In R at T = 0 must 

satisfy eqs. (9) and (10) order by order. This last condition together with eq. (12), leads to 

the coupled non-linear system 

V In R . u + b,ql - b,q, = regular 

Vx + u + b,ql + b,q;! = regular , (13) 

where ql = V2 In R + (V In R)2 - (VX)~, q2 = V2x + 2V In R. ‘7~ and u = 2 + 2b,(V In w + 

fiT x V0) - 2b,(V8 - fiT x V In w). 

Cancellation of terms of order r-l in eq. (13) leads to two equations for the perpendicular 

components of u. The integrability condition provides four first-order differential equations 
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relating the functions gi and hi, and together with four algebraic relations resulting from 

eq. (12) the system can be solved in terms of four constants of integration. The perpen- 

dicular components of u are then uniquely determined in terms of C. Furthermore, the 

singular terms of order T- ’ In KT in eq. (13) cancel. It is always possible to set the tangential 

velocity, which is void of physical meaning, to zero by a time-dependent reparametrization 

s + s(t). In the language of relativistic string theory, this is referred to as world-sheet 

reparametrization invariance. The exact result for the velocity of the vortex filament is 

A=b, ~~B+2(V10+C~)-2~TxVlnw 
( InI I4 

rcN-2V~lnw-2~Tx(VB+C) 
InI 

, (14) 

where ( )I = -T x [T x ( )] and the fields on the right-hand side are to be evaluated at the 

filament position X(s, t). The exact two-dimensional result is obtained as K + 0. 

The value of X is independent of the choice of gauge for R and x. Indeed, substituting 

C from eq. (12) into eq. (14) we obtain the manifestly invariant expression 

X = !i~ b, 
I( 

K~$B + 2VIS - 2fiT x Vln IAl 

n-N-2Vlln]A]-2$‘TxVS . (15) 
in which the filament velocity is written in terms of gradients of the magnitude and phase 

of the original complex field A. Let us define the complex velocity ,k E (N + iB) . X and 

express the derivatives in eq. (15) in terms of z G x + iy and its conjugate z*. Then a quite 

beautiful result emerges: 

1 

i=b(-4&lnA(i,z*)+n) , n 2 1 

(i’=b(-4~lnA(z,z*)+n) , n<-1, 

(16) 

where the right-hand side is to be evaluated at .z = t* = 0. 

The results are to be interpreted as follows: The velocity of the central filament of a 

vortex gets contributions from the curvature K of the filament and from local gradients of 
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the magnitude (A( and phase S of the complex field. A cylindrically symmetric solution 

A = p(r)exp[i($(r) + n((r - wt))], for which p = IAl - ~1~1 and $‘(O) = 0, contributes 

nothing to the velocity and corresponds to a straight (or two-dimensional) isolated vortex 

at rest with respect to the lab frame. Non-zero gradient contributions appear as a result of 

deviations from cylindrical symmetry in IAl and S. In a symmetric gauge with C = 0, these 

deviations are represented by w and 0. The asymmetries arise from the presence of other 

vortices, system boundaries, or (in three dimensions) other segments of the same filament, 

causing the vortex to move. 

In the C = 0 gauge the expression (14) reproduces a variety of results obtained previously 

for special cases. For K = 0 and Vlnw z 0 it reduces to eq. (2) corresponding to a two- 

dimensional dilute system [8]. In the GPG limit b, = 0 the expression (14) coincides with 

that derived by Lee [22], w h o used a different method to find the velocity. For b, = 0, eq. (1) 

describes the non-linear diffusion of two fluid components with identical diffusion constants. 

In this limit the contribution to % from curvature, b,KN, agrees with the result of Ref. [15]. 

The expressions (14)-( 16) for th e velocity are exact also for an arbitrarily small distance 

between filaments. This makes the formulation well suited for theoretical or numerical 

investigations of local vortex interactions, such as crossing, merging and intercommutation, 

in which the vortex cores overlap [3,23]. W e caution that the GPG equation does not provide 

a realistic model for the core of a superfluid vortex, since there the core width is comparable 

to interatomic distances. For magnetic flux vortices in a superconductor, however, the core 

width is much larger and a classical description is justified. Such vortices are solutions of 

eq. (1) with the substitution V + V + 2ieA/(hc), where A is the vector potential and 2e 

is the charge of a Cooper pair. The corresponding filament velocity is easily obtained by 

adding 2eA/(hc) to VB in eq. (14) or to VS in eq. (15) [22]. 

In summary, we have derived the exact equation of motion for a vortex in a large class 

of models of a non-relativistic complex field described by the complex Ginzburg-Landau 

equation (1) with an arbitrary, continuous function P(A, A*). The velocity is expressed in 

terms of local gradients of the magnitude and phase of the complex field A. The result 
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agrees with that of Ref. [8] ( our eq. 2) in the case of a dilute two-dimensional system of 

vortices, but for the general non-dilute case in two and three dimensions we find additional 

contributions to the velocity corresponding to the asymmetry of the magnitude IAl around 

the vortex. 
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FIGURES 

X 

FIG. 1. One-armed spiral vortex of the CGL field A = IAjeiS in a two-dimensional system. 

The height of the surface depicts the magnitude IAl. The spiraling curves are contour lines of the 

phase S (isophase lines). The phase change between two thin lines is 7r/2. 
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